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Abstract
An analysis of the dynamics of cylindrical domain walls in planar aligned
samples of smectic C liquid crystals is presented. A circular magnetic field,
induced by an electric current, drives a time-dependent reorientation of the
corresponding radially dependent director field. Nonlinear approximations
to the relevant nonlinear dynamic equation, derived from smectic continuum
theory, are solved in a comoving coordinated frame: exact solutions are
found for a π -wall and numerical solutions are calculated for π

2 -walls. Each
calculation begins with an assumed initial state for the director that is a
prescribed cylindrical domain wall. Such an initial wall will proceed to
expand or contract as its central core propagates radially inwards or outwards,
depending on the boundary conditions for the director, the elastic constants,
the magnitude of the field and the sign of the magnetic anisotropy of the liquid
crystal.

PACS numbers: 61.30.−v, 61.30.Dk

1. Introduction

Liquid crystals are anisotropic fluids that generally consist of elongated rod-like molecules
which have a preferred local average direction. This direction is commonly described by
the unit vector n, usually called the director. Smectic liquid crystals are layered structures
in which n makes an angle θ with respect to the local smectic layer normal a, as shown in
figure 1. Although the angle θ , also known as the smectic cone angle, is usually temperature
dependent, it may, nevertheless, vary because of competition between boundary conditions,
elastic effects and smectic layer compressional effects. The idealized smectic A (SmA) liquid
crystal phase is said to occur when θ ≡ 0, in which case n and a coincide. When θ �= 0
the structure is called a smectic C (SmC) liquid crystal. In the isothermal SmC phase it is
generally acceptable to assume that θ remains at a fixed constant angle so that the director n is
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Figure 1. (a) The local layer alignment in SmC liquid crystals. The short bold lines represent the
molecular alignment, denoted by the director n, within parallel layers. The director is tilted at an
angle θ relative to the local layer normal a. (b) The director n is constrained to lie on the surface
of a fictitious cone when θ �= 0 is fixed; the vector c is the unit orthogonal projection of n onto the
smectic planes. The orientation of n is fully described by a and the angle φ that c makes measured
relative to some fixed axis within the smectic planes.

constrained to lie on the surface of a fictitious cone, as indicated in figure 1(b); it often proves
convenient to introduce the unit orthogonal projection of n onto the smectic planes, denoted
by c. In general, the orientation of n can be completely described by a and c because

n = a cos θ + c sin θ. (1.1)

The orientation angle φ of c, measured relative to some fixed axis within the smectic planes,
is often introduced in mathematical descriptions of SmC. If the smectic layers and the smectic
cone angle θ remain fixed, as will be the case here when a is a constant vector, then the
orientation of the director within the smectic layers is completely described by means of the
angle φ via (1.1). More general details on the physical and mathematical descriptions of liquid
crystals can be found in the books by de Gennes and Prost [1], Chandrasekhar [2] and Stewart
[3].

The alignment of the director n is known to be affected by applied magnetic fields.
Isothermal conditions will be supposed throughout this paper so that the orientation of n is
completely described by the orientation of c, as described above. For liquid crystals, n prefers
to align parallel to the field when the magnetic anisotropy �χ is positive and perpendicular
to the field when �χ is negative. Moreover, this alignment can also depend upon bulk
elastic effects due to elastic distortions of the director. The distortions of n that arise from
elasticity and applied fields are characterized via elastic and magnetic energy densities and
these are introduced below in section 2. The imposition of boundary conditions on n creates
a competition between the effects of elasticity and applied magnetic fields that will depend on
the magnitudes of the bulk elastic constants and the field. When additional initial conditions
are prescribed then this competition will lead to a time-dependent director profile that requires
a dynamic theory for its description: the dynamic theory for SmC liquid crystals is also
outlined in section 2. More general details on the elastic and magnetic properties of liquid
crystals can be found in [1–3].

The problem to be discussed in this paper concerns the radial propagation of a circular
domain wall in planar aligned SmC samples. A circular magnetic field, induced by an electric
current passing along a straight wire, may produce an annular domain wall when the magnetic
field direction and boundary conditions encourage a director alignment near the wire and
radially far from the wire that conflicts with the elastic preferences for distortions of the
director in the bulk, as will be described below. Supplying initial conditions will result in
the radial propagation of this domain wall and it is this effect, and its consequences, that will
be investigated here. Radially propagating domain walls in nematics have been discussed by
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Figure 2. (a) Cross-section in the xz-plane showing a representative SmC layer. Bold lines
represent the director alignment as seen by an observer looking along the y-axis. A wire of radius
r0 carries a current that induces a circular magnetic induction B. The smectic layer normal is a.
The domain wall occurs in the annular grey region over which the director reorients between two
constant states. The central core of the wall is located at ρ(t). The distances ξ0(t) and ξ1(t) are the
‘outer’ and ‘inner’ wall half-widths, respectively. (b) The geometry as seen by an observer looking
down the z-axis. The orientation of c is described via the angle φ(ξ, t); φ0 and φ1 are the constant
orientation angles of c in those parts of the sample in the outer and inner regions, respectively, that
are exterior to the wall, as defined in (2.5). At the core of the wall φ = (φ0 + φ1)/2.

Stelzer and Arodź [4] and Arodź and Larsen [5] and these articles have motivated much of
the investigation here. It should also be mentioned that computer simulations of domain wall
growth in ferroelectric smectic C (SmC*) liquid crystals have been reported by Maclennan et al
[6] who introduced a schematic figure of a radially symmetric domain wall and corresponding
wall width which are very similar in nature to those presented in figure 2(b) in the context
of smectic liquid crystals. Rotation of the vector c through the angle π has been observed
experimentally by Pociecha et al [7] in free standing films of SmC. The π -walls observed
in [7] were static and did require some change in the smectic layer thickness when labyrinth
structures developed. The π -walls described below in section 3.2 are idealized versions of
annular π -walls which, unlike the experiments considered in [7], may also propagate due to
the presence of an induced magnetic field that encourages a competition between competing
constant equilibrium orientation angles for the director. Comments on cylindrical annular
geometries and possible orientations of the director in nematics have been made by Palffy-
Muhoray et al [8]; in the context of SmC, these are especially relevant in relation to the
region around the centre of the sample introduced below. The behaviour of the director in the
vicinity of line defects or polymer fibres, and also in the interior of confining cavities, leads
to the study of liquid crystals around an effectively isotropic internal cylinder [8], such as the
aforementioned wire in the set-up mentioned above for SmC.

Section 2.1 introduces the geometrical set-up for the problem and a more detailed
mathematical model of the structure of the domain wall described in a comoving coordinate
frame. Section 2.2 briefly introduces SmC liquid crystal dynamic theory, while section 2.3
derives the nonlinear governing dynamic equation (2.40) that will be the basis of our analysis.
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Given the highly nonlinear form of this equation, a polynomial expansion will be derived
in section 3.1 that will allow nonlinear approximating equations to be made which can be
solved exactly for the case of a π -wall in section 3.2. This approach has been motivated
by a series of articles on thick domain walls and related types of radially symmetric domain
walls in nematic liquid crystals studied by Arodź [9, 10], Arodź and Stelzer [11], Stelzer
and Arodź [4] and Arodź and Larsen [5]. For a π -wall the exact solutions reveal that the
central ‘core’ of the wall will always move radially towards the centre of the sample while
the domain wall half-width (half of the ‘annular width’ of the wall) will change as the core
of the wall propagates, depending on the magnitude of the field and the sign of the magnetic
anisotropy. The approximating nonlinear equations will also be solved numerically for two
different π

2 -walls in section 3.3. For π
2 -walls the core of the wall may propagate radially

inwards or outwards and this will depend on the imposed boundary conditions, the magnitude
of the field and the sign of the magnetic anisotropy. Many of the features that will appear
in the solutions displayed below share similarities to the effects that have been discussed for
nematic liquid crystals using radially comoving coordinates [4]. The paper concludes with a
discussion of the results in section 4.

2. Geometrical set-up and governing equation

In this section we introduce the mathematical description of the problem and derive the
governing dynamic equation. The mathematical model for a general radial domain wall will
be given in section 2.1. The relevant dynamic theory is presented in section 2.2, which then
leads to the key governing dynamic equation (2.40) for radial domain walls that is derived in
section 2.3. The solutions to this equation for various boundary conditions will be the focus
of our attention in section 3 and the remainder of the paper.

2.1. Geometrical set-up

Consider a film of planar aligned SmC liquid crystal in which the smectic layer normal
a is parallel to the z-axis as shown in figure 2(a), where only one representative smectic
layer is shown schematically in cross-section for emphasis (there are, of course, many more
parallel layers stacked upon each other). Boundary conditions at planes where z is constant
are neglected; the sample depth in the z-direction can be assumed thin (e.g., a freely suspended
film) or have any thickness with appropriate boundary conditions. It is the radial domain wall
in the xy-plane that is the key phenomenon to be investigated. A long straight wire carrying
a current I is modelled by a solid circular cylinder of radius r0 placed along the z-axis. It is
well known from the Biot and Savart law [12, section 5.2] that, under idealized conditions,
this current will induce a circular magnetic field B, known as the magnetic induction: the
lines of magnetic induction form concentric circles around the wire, as indicated in figure 2.
Figure 2(a) shows a cross-section through the xz-plane of a single SmC layer which lies in
the xy-plane and gives an indication of the anticipated alignment of the director n as viewed
along the y-direction, represented by the short bold lines. Competing boundary conditions on
the director at the central cylindrical boundary and radially far from the centre of the sample
will induce a radial domain wall across which the alignment of the director changes from one
constant state to another. This wall will be located over the grey annular region shown in
figure 2(b), where the ‘core’ of the wall (where the orientation angle of the director is precisely
mid-way between the two competing boundary states) is represented by the dashed circle
located at the time-dependent distance ρ(t) from the origin in the xy-plane. The time-
dependent annular region will propagate radially and the radial depth of the annular region
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itself will also expand or contract under the influence of the magnetic field, depending upon
the material properties of the liquid crystal.

Figure 2(b) introduces the geometry used for the mathematical description of the domain
wall. As in Stelzer and Arodź [4], it is advantageous to work with the comoving coordinate
frame described in figure 2(b). The coordinate ξ is introduced as a measure of the outwards
radial distance from ρ(t). Thus the ‘outer’ and ‘inner’ edges of the wall are located at
ρ(t) + ξ0(t) and ρ(t) − ξ1(t), respectively, where ξ0(t) is the time-dependent radial distance
from the core of the wall to the outer edge and ξ1(t) is the distance from the core to the inner
edge, as shown in the figure. The usual polar angle α is also introduced. Thus the comoving
coordinate system has coordinates ξ , α and z with basis vectors ξ̂, α̂ and ẑ, respectively. These
basis vectors can be found via their connection to Cartesian coordinates through the relations

x = (ρ(t) + ξ) cos α, y = (ρ(t) + ξ) sin α, z = z, (2.1)

from which the usual scale factors can be derived, namely,

h1 = 1, h2 = ρ(t) + ξ, h3 = 1. (2.2)

In the geometry of figure 2(b), the layer normal a and vector c may take the forms

a = ẑ, c = ξ̂ sin φ + α̂ cos φ, where φ = φ(ξ, t). (2.3)

The magnetic field for the set-up being considered here may be written as

B = μ0

2π

I

ρ(t) + ξ
α̂, (2.4)

where μ0 is the permeability of free space. Analogous to the situation described for nematics
by Stelzer and Arodź [4], it will be supposed that the director is fixed at the solid inner circular
boundary and far away in the radial direction so that φ = φ1 at r0 and φ = φ0 at r = ∞. It
follows that for the domain wall introduced here we require

φ(ξ, t) ≡

⎧⎪⎨⎪⎩
φ1 between r0 and the inner edge of the wall,

1
2 (φ0 + φ1) at the core of the wall,

φ0 radially outwards from the outer edge of the wall.

(2.5)

Between the outer and inner edges of the wall the vector c rotates through an angle of magnitude
|φ1 − φ0| radians. The wall width is defined to be ξ0(t) + ξ1(t), which is the radial distance
over which c rotates through |φ1 − φ0| radians, represented by the radial depth of the grey
annular region in the figure. However, it will turn out to be more convenient to work with the
wall half-width w0(t) in this geometry, defined by

w0(t) = 1
2 [ξ0(t) + ξ1(t)] . (2.6)

For the comoving coordinates introduced above, the outer and inner edges of the wall are
located at ξ = ξ0(t) and ξ = −ξ1(t), respectively, measured relative to the (positive) radial
direction ξ̂, recalling that ξ is measured from the position of ρ(t).

The gradient operator in the above system of comoving cylindrical coordinates is given
by

∇ = ξ̂
∂

∂ξ
+ α̂

1

ρ(t) + ξ

∂

∂α
+ ẑ

∂

∂z
. (2.7)

The material time derivative with respect to the comoving frame described in the comoving
coordinates is given by (see [13, p 28] for a related Cartesian form)

D

Dt
= ∂

∂t
+ v · ∇ − dr

dt
· ∇, (2.8)
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where r(t) is the time-dependent position vector of the origin of the comoving frame relative
to the fixed Cartesian origin and v is the velocity of a material element, both of these quantities
being expressed in terms of the comoving coordinates. In the above set-up, r(t) = ρ(t )̂ξ and
it will be assumed that hydrodynamic flow will be negligible. It then follows from the usual
rules for gradient operators [14] that we can write, under these particular conditions,

D

Dt
= ∂

∂t
− dρ

dt

∂

∂ξ
, (2.9)

as noted by Stelzer and Arodź [4]. This operator is actually applicable to both scalars and
vectors because of the particular form for r(t) adopted here.

2.2. SmC continuum theory

Here we briefly present the relevant parts of the SmC dynamic continuum theory introduced by
Leslie et al [15] for isothermal incompressible SmC liquid crystals; a summary and a review
of some general developments of this theory may be found in [3]. We shall adopt Cartesian
index notation as appropriate where repeated indices are summed from 1 to 3. The vectors a
and c are subject to the constraints

a · a = 1, c · c = 1, a · c = 0, ∇ × a = 0. (2.10)

The dynamic equations arising from the balance of linear momentum may be neglected in the
present problem because flow is assumed negligible. This is quite common practice in liquid
crystal theory [3, p 315] and it also happens to be the position adopted by Stelzer and Arodź
[4] for nematics. The remaining governing dynamic equations are those that arise from the
balance of angular momentum. They consist of the two coupled sets of equations(

∂w

∂ai,j

)
,j

− ∂w

∂ai

+ Ga
i + g̃a

i + γ ai + μci + εijkβk,j = 0, (2.11)

(
∂w

∂ci,j

)
,j

− ∂w

∂ci

+ Gc
i + g̃c

i + κci + μai = 0, (2.12)

where w is the SmC elastic energy density and i = 1, 2 or 3. The scalar functions γ , μ

and κ and the vector function β are Lagrange multipliers that arise from the constraints
(2.10). Equations (2.11) and (2.12) are often referred to as the a-equations and c-equations,
respectively. In these equations the generalized external body forces per unit volume related
to a and c are denoted by Ga and Gc, respectively. Although there is no fluid flow, there will
be time-dependent effects related to the orientation of the director. Such effects occur due to
the presence of the dynamic terms g̃a

i and g̃c
i which, in the absence of flow, are given by

g̃a
i = −2

(
λ4ȧi + λ6cicpȧp + τ5ċi

)
, (2.13)

g̃c
i = −2 (λ5ċi + τ5ȧi ) , (2.14)

where λ4, λ5, λ6 and τ5 are dynamic viscosity coefficients and a superposed dot represents
the usual material time derivative (the full forms for these terms when flow is present may be
found in [ 3, 15]). It often proves convenient to introduce the notation

�a
i =

(
∂w

∂ai,j

)
,j

− ∂w

∂ai

, �c
i =

(
∂w

∂ci,j

)
,j

− ∂w

∂ci

. (2.15)

Further details of this particular SmC dynamic continuum theory, and a brief discussion
on the viscosity coefficients and the physical significance of the Lagrange multipliers, may be
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found in [3]. The a- and c-equations are the relevant dynamic equations for what we consider
here; it is shown below that the a-equations will be satisfied automatically by a judicious
choice of Lagrange multipliers (essentially because the layers are assumed fixed in space) so
that it is really the c-equations that will be of significance.

There are a number of equivalent ways of writing the elastic energy density for SmC [16].
The one that proves convenient here may be written as [3, 15, 16]

w = 1
2K1(∇ · a)2 + 1

2K2(∇ · c)2 + 1
2K3(a · ∇ × c)2 + 1

2K4(c · ∇ × c)2

+ 1
2K5(b · ∇ × c)2 + K6(∇ · a)(b · ∇ × c) + K7(a · ∇ × c)(c · ∇ × c)

+ K8(∇ · c)(b · ∇ × c) + K9(∇ · a)(∇ · c), (2.16)

where Ki, i = 1, 2, . . . , 9 are elastic constants and the vector b = a × c has been introduced
for ease of notation. The magnetic energy potential for general liquid crystals, in terms of the
magnetic induction B, is the negative of the usual magnetic energy density and is given by [3,
p 30]

�m = 1
2μ−1

0 �χ(n · B)2, (2.17)

where �χ is the unitless magnetic anisotropy, which may be positive or negative for different
materials. The related generalized body forces then take the forms [3, p 263]

Ga
i = μ−1

0 �χ(n · B)Bi cos θ, Gc
i = μ−1

0 �χ(n · B)Bi sin θ, (2.18)

where, as mentioned earlier, n = a cos θ + c sin θ . The results quoted here are valid provided
the magnetic susceptibilities are small [17], an assumption that has been found generally
acceptable in many liquid crystal applications.

2.3. Governing dynamic equations

We now derive the governing equations to be discussed in this paper using the theory outlined
in the previous section. Constraints (2.10) are satisfied for the forms of a and c stated at
equation (2.3). Calculations reveal that

∇ · a = 0, (2.19)

∇ · c = 1

(ρ(t) + ξ)

∂

∂ξ
[(ρ(t) + ξ) sin φ] , (2.20)

∇ × c = 1

(ρ(t) + ξ)

∂

∂ξ
[(ρ(t) + ξ) cos φ] ẑ, (2.21)

a · ∇ × c = 1

(ρ(t) + ξ)

∂

∂ξ
[(ρ(t) + ξ) cos φ] , (2.22)

c · ∇ × c = 0, (2.23)

b · ∇ × c = 0. (2.24)

Further, using standard results from [18] that involve the scale factors (2.2), it is found that
(see [3, p 265] for general vector expressions for �a and �c which considerably reduce the
standard calculations)

�a = −K3(a · ∇ × c)(∇ × c) − K8(∇ · c)(c × ∇ × c) + K9∇(∇ · c), (2.25)

�c = K2∇(∇ · c) − K3∇ × {(a · ∇ × c)a}
−K7 [∇ × {(a · ∇ × c)c} + (a · ∇ × c)(∇ × c)] − K8∇ × {(∇ · c)b} . (2.26)
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Note that the contributions involving K7 and K8 in �c have components in the ẑ direction
only. Equations (2.4) and (2.18) lead to

Ga = B(ξ, t) sin θ cos θα̂, Gc = B(ξ, t) sin2 θα̂, (2.27)

where

B(ξ, t) = μ0�χ

4π2

I 2

(ρ(t) + ξ)2
cos φ. (2.28)

It also follows from the material derivative defined in equation (2.9) and expressions (2.13)
and (2.14) that

g̃a = −2τ5ċ, g̃c = −2λ5ċ, (2.29)

where

ċ = cos φ

(
∂φ

∂t
− dρ

dt

∂φ

∂ξ

)
ξ̂ − sin φ

(
∂φ

∂t
− dρ

dt

∂φ

∂ξ

)
α̂. (2.30)

We now deal with the a-equations and c-equations separately.

2.3.1. The a-equations. To solve the a-equations (2.11) it is sufficient to identify the Lagrange
multipliers γ , μ and β. We follow the general procedure outlined by Stewart et al [19] that
was based on an extension to curvilinear coordinates of a general procedure for Cartesian
coordinates: see [20, section 67] and [3, p 304]. The multiplier μ can be determined by taking
the scalar product of the c-equations (2.12) with a = ẑ and using the results from (2.26),
(2.27), (2.29) and (2.30) to find that

μ(ξ, t) = −�c
3. (2.31)

It is well known that for any differentiable vector F ,

∇ · F = 0 if and only if F = ∇ × G, (2.32)

for some twice differentiable vector G, called the vector potential, which is unique apart from
the addition of the gradient of an arbitrary scalar field. Since ∇ · (∇ × β) = 0, the divergence
of the a-equations in (2.11) can be taken to eliminate β, leaving a differential equation for
the scalar function multiplier γ . If we set the left-hand side of the a-equations to be in the
form F + ∇ × β, then taking the divergence of both sides of equation (2.11) gives ∇ · F = 0,
which gives the differential equation to solve for γ . Once a solution for γ has been identified,
the result in equation (2.32) can be applied to conclude that there exists a unique (apart from
the gradient of a scalar field) differentiable vector field G which satisfies F = ∇ × G. We
can then set β = −G. It then follows that F + ∇ × β = 0, so that the a-equations (2.11) are
satisfied: the solution for γ guarantees the existence of β and the consequent fulfilment of the
a-equations. Knowledge that the differential equation for γ has a solution is therefore sufficient
to guarantee the existence of the vector multiplier β, which does not need to be calculated
explicitly (unless it is specifically required). It is known [3, 21] that if a particular type of
smectic layer configuration is supposed then the vector β can provide a mechanism through
the couple stress to transmit the torques needed to maintain the assumed layer configuration.
The divergence of (2.11) in the comoving coordinates, using (2.25), (2.27), (2.29) and (2.30),
leads to the differential equation

1

ρ(t) + ξ

∂

∂ξ

[
(ρ(t) + ξ)

(
�a

1 + g̃a
1 + μc1

)]
+

∂γ

∂z
= 0. (2.33)

This can clearly be integrated to find that

γ (ξ, α, z, t) = − z

ρ(t) + ξ

∂

∂ξ

[
(ρ(t) + ξ)

(
�a

1 + g̃a
1 + μc1

)]
+ M(ξ, α, t), (2.34)
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where M is an arbitrary function of ξ , α and t. It follows that, provided ρ(t) + ξ is never zero
and that a solution for φ(ξ, t) can be found from the c-equations, γ can be determined from
(2.34), thereby guaranteeing the existence of a vector multiplier β so that the a-equations are
satisfied. It may be of interest to note that in this instance we can find β explicitly. It is given
by

β1 = (ρ(t) + ξ)

∫ α

M(ξ, α̃, t) dα̃ +
∂Y

∂ξ
, (2.35)

β2 = − 1

ρ(t) + ξ

{∫ ξ

(ρ(t) + ξ̃ )�a
3 (̃ξ , t) d̃ξ − z(ρ(t) + ξ)

(
�a

1 + g̃a
1 + μc1

) − ∂Y

∂α

}
, (2.36)

β3 =
∫ ξ (

�a
2 (̃ξ , t) + Ga

2 (̃ξ , t) + g̃a
2 (̃ξ , t) + μ(̃ξ, t)c2(̃ξ , t)

)
d̃ξ +

∂Y

∂z
, (2.37)

where Y is an arbitrary differentiable function of ξ , α, z and t. It can be verified directly via
(2.3), (2.27), (2.29), (2.30) and the results in (2.34)–(2.37) that β satisfies the a-equations
(2.11) because

∇ × β = −(�a
1 + g̃a

1 + μc1)̂ξ − (
�a

2 + Ga
2 + g̃a

2 + μc2
)
α̂ − (

�a
3 + γ

)
ẑ. (2.38)

This fortunate position has chiefly arisen because it has been assumed that there is no flow and
that the layer normal a remains fixed; in general, if a is non-constant then it will be non-trivial
to solve the a-equations coupled to the c-equations. Thus it only remains to determine and
solve the c-equations in order to find complete solutions to all the relevant equations.

2.3.2. The c-equations. The Lagrange multiplier μ, which couples the a-equations to the
c-equations, has been identified at equation (2.31). The remaining multiplier κ may be found
by taking the scalar product of the c-equations with c. Alternatively, κ may be eliminated
from the c-equations as follows, noting that for i = 3 the corresponding equation in (2.12) is
automatically satisfied by the insertion of μ derived above so that only the first and second of
the c-equations remain. We can multiply the first equation by c2 and the second by c1 and then
subtract them. This eliminates κ and produces the final governing dynamic equation, namely,

�c
1c2 − �c

2c1 + g̃c
1c2 − g̃c

2c1 − Gc
2c1 = 0. (2.39)

Recall that contributions related to K7 and K8 do not appear in �c
1 and �c

2, as noted after (2.26).
A straightforward insertion of the expressions in equations (2.3), (2.20), (2.22), (2.26)–(2.30)
into (2.39) delivers the key dynamic equation for the problem discussed here. This governing
dynamic equation for φ(ξ, t) is therefore

2λ5

[
∂φ

∂t
− dρ

dt

∂φ

∂ξ

]
= K2 cos φ

∂

∂ξ

[
1

(ρ(t) + ξ)

∂

∂ξ
[(ρ(t) + ξ) sin φ]

]
−K3 sin φ

∂

∂ξ

[
1

(ρ(t) + ξ)

∂

∂ξ
[(ρ(t) + ξ) cos φ]

]
−μ0�χ

4π2

I 2 sin2 θ

(ρ(t) + ξ)2
sin φ cos φ. (2.40)

It is known [15] that λ5 > 0 while the elastic constants K2 and K3, which are equivalent to the
constants B2 and B1, respectively, introduced by the Orsay Group [22], are positive [15, 3].
Equation (2.40) forms the basis for the work in this paper. Its solution will require solutions
for both ρ(t) and φ(ξ, t) in order to determine the complete dynamics of the director.

9
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3. Solutions for ρ and φ

3.1. Polynomial approximation and boundary conditions

The nonlinear equation (2.40) has no known exact solutions and is similar in structure to
the various cases discussed by Stelzer and Arodz̀ [4] for nematics. We shall construct an
approximating system of coupled nonlinear equations that can be solved analytically in special
cases by adopting a method of polynomial expansion that has been developed for such problems
by Arodz̀ [9, 10], Stelzer and Arodz̀ [4], Arodz̀ and Stelzer [11] and Arodz̀ and Larsen [5].

The main idea is to take the spatial dependence of φ(ξ, t) as a Taylor-like expansion with
respect to the wall distance ξ around the ‘core’ value at ξ = 0, that is, around φ(0, t). From
figure 2 and equation (2.5) it is seen that

φ(0, t) = 1
2 (φ0 + φ1) for all t � 0. (3.1)

A Taylor expansion around ξ = 0 to third order in ξ then allows a polynomial approximation
for φ(ξ, t) to be made with time-dependent coefficients of the form

φ(ξ, t) = 1
2 (φ0 + φ1) + a(t)ξ + 1

2b(t)ξ 2 + 1
6c(t)ξ 3. (3.2)

From the description in section 2.1, the instantaneous wall width is given by 2w0 =
ξ0(t) + ξ1(t). From figure 2 and (2.5) the boundary conditions are (recall that ξ is measured
relative to the position of the core at ρ(t))

φ(ξ0, t) = φ0, φ(−ξ1, t) = φ1, (3.3)

∂

∂ξ
φ(ξ0, t) = 0,

∂

∂ξ
φ(−ξ1, t) = 0. (3.4)

The boundary conditions stated at (3.4) ensure smoothness of the solution for φ at the
edges of the annular region. Substituting the above boundary conditions into the polynomial
approximation (3.2) for φ leads to the relations

aξ0 + 1
2bξ 2

0 + 1
6cξ 3

0 = 1
2 (φ0 − φ1), (3.5)

aξ1 − 1
2bξ 2

1 + 1
6cξ 3

1 = 1
2 (φ0 − φ1), (3.6)

a + bξ0 + 1
2cξ 2

0 = 0, (3.7)

a − bξ1 + 1
2cξ 2

1 = 0. (3.8)

These equations form a set of inhomogeneous linear equations for the time-dependent
coefficients a, b and c. Using Gaussian elimination, it is seen that for consistency, with
ξ0 and ξ1 both non-zero, we require

ξ0(t) = ξ1(t), b = 0, (3.9)

which means that the partial wall widths ξ0 and ξ1 must be identical, showing that the wall
half-width w0 = ξ0(t), and that there are no quadratic terms in ξ in the approximation for φ.
This results in

a = −ξ 2
0

2
c = 3

4

(φ0 − φ1)

ξ0
, (3.10)

c = −3

2

(φ0 − φ1)

ξ 3
0

. (3.11)

10
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Further, it is possible to use (3.10) to express c in terms of a as

c = −3

2

(φ0 − φ1)

ξ 3
0

= −32

9

1

(φ0 − φ1)2
a3. (3.12)

The results in (3.10)–(3.12) show that the coefficients in the cubic expansion of φ can all be
expressed in terms of a(t) (or ξ0(t)) and the constants φ0 and φ1. We choose to work with a(t)

for convenience in the calculations below: a straightforward conversion to the more physically
relevant wall half-width w0 = ξ0(t) will be made as required via (3.10).

We can now insert a, b and c into the polynomial expansion (3.1) to give φ in terms of
a(t), φ0 and φ1. The trigonometric terms in the dynamic equation (2.40) are then expanded
up to third order in ξ . The corresponding coefficients of the powers of ξ that appear in
the fully differentiated version of (2.40) are then equated to zero to obtain approximating
dynamic equations. As highlighted in previous work [4], meaningful results can be obtained
by inspecting the nonlinear equations that arise from the zeroth and first orders in ξ only (note
that to do this we must take φ to at least third order in ξ because of the second derivatives that
occur in (2.40)). The two equations from the zeroth and first order are, respectively,

2λ5
dρ

dt
= (K2 − K3)

[
1

2

(
a +

1

aρ2

)
sin(φ0 + φ1) − 1

ρ
cos2((φ0 + φ1)/2)

]
−K3

1

ρ
+

μ0�χ

8π2a

I 2

ρ2
sin2 θ sin(φ0 + φ1), (3.13)

2λ5
da

dt
= (K2 − K3)

[(
1

ρ3
− a2

ρ

)
sin(φ0 + φ1) −

(
a3 +

a

ρ2

)
cos(φ0 + φ1)

−
(

a

ρ2
+

32

9

a3

(φ0 − φ1)2

)
cos2((φ0 + φ1)/2)

]
− K3

[
a

ρ2
+

32

9

a3

(φ0 − φ1)2

]
− μ0�χ

4π2

I 2

ρ3
sin2 θ [aρ cos(φ0 + φ1) − sin(φ0 + φ1)] . (3.14)

We shall suppose that initial conditions are supplied at t = 0 so that

ρ(0) = ρ0, a(0) = a0, (3.15)

the latter condition leading to an initial condition for ξ0 given via (3.10) as

ξ0(0) = 3

4

(φ0 − φ1)

a0
. (3.16)

Solutions to the above equations for ρ(t) and ξ0(t) (determined from a(t) via relation (3.10))
now form the basis of the remainder of the work in this paper. We note that at any given instant
the solution φ(ξ, t) is given via (3.2), (3.9) and (3.12) by

φ(ξ, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ1, for r0 � ξ � −ξ0(t),

1

2
(φ0 + φ1) + a(t)ξ − 16

27

1

(φ0 − φ1)2
a3(t)ξ 3, for −ξ0(t) < ξ < ξ0(t),

φ0, for ξ � ξ0(t).

(3.17)

In general, numerical solutions to the coupled nonlinear differential equations (3.13) and
(3.14) have to be sought. Nevertheless, in the special case of a π -wall the exact solutions for
ρ and a can be determined because equation (3.13) decouples from (3.14), as will now be
demonstrated. These exact solutions provide a particularly clear insight into the behaviour of
the more general cases that can be generated numerically.

11
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c = ξ  ξ ξξ sinφ(ξ,t) + α  α αα cosφ(ξ,t) ^ ^
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φ = π/ 2

1

0

B =  ^I
ρ(t)+ξ αααα

2π  π ππ 
μ

 0

(a)

(b)

a
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c

θ

Figure 3. (a) Cross-section, similar to that in figure 2(a), with bold lines indicating the alignment
of the director for a π -wall as seen by an observer looking along the y-axis with φ = π

2 at the
core of the domain wall. At ξ0(t) the alignment of a, c and n are as shown, where φ0 = π and
c = α̂. (b) The wall as seen by an observer looking down the z-axis. The bold lines here represent
schematically a typical radially dependent alignment of the vector c within the xy-plane as it
reorients through π radians across the wall: the full alignment consists of many such ‘spokes’.
The annular wall width will expand or contract and the core will move radially inwards or outwards
as the wall adjusts to the effects of the magnetic induction B and the competition between constant
states.

3.2. The π -wall

In this section we investigated the special case of a π -wall where we can set φ0 = π and
φ1 = 0 with φ = π

2 at the core of the wall, as shown in figure 3. The core is located at ρ(t),
measured as shown in figure 3(a), and it is known from (3.9) that ξ0(t) = ξ1(t) and that the wall
half-width is then w0(t) = ξ0(t). The short bold lines in figure 3(b) represent the alignment of
c as seen by an observer looking down the z-axis and focussing on one representational radial
element; this pictured dependence of c on the radial coordinate is assumed uniform in the α-
and z-directions. Inserting φ0 = π and φ1 = 0 into equation (3.13) gives

dρ

dt
= − K3

2λ5ρ
, (3.18)

which can be solved exactly to find

ρ(t) = ρ0 (1 − βt)
1
2 , (3.19)

where

β = K3

λ5ρ
2
0

. (3.20)

This indicates that the core of the wall will move radially inwards and that this solution for ρ

is valid for 0 � t < tm where tm = 1/β is the maximum time for which ρ(t) is valid. Clearly,
dρ/ dt diverges and ρ tends to zero as t → tm; however, physically, this situation cannot

occur because of the presence of the solid central cylinder of radius r0. The result for ρ can

12



J. Phys. A: Math. Theor. 42 (2009) 235501 I W Stewart and E J Wigham

be inserted into equation (3.14) to find that the nonlinear differential equation for a(t) is then
given by

da

dt
= βδ

2(1 − βt)
a − Na3, (3.21)

where, for ease of notation,

δ = 1

K3

(
K2 − 2K3 +

μ0�χ

4π2
I 2 sin2 θ

)
, (3.22)

N = 1

2λ5

(
K3 − K2 +

32

9

K3

π2

)
. (3.23)

We remark here that an interchange in the roles of φ0 and φ1 in this particular example does
not alter the differential equations (3.18) and (3.21), as can be checked by direct substitution
into equations (3.13) and (3.14) while exercising care in the calculation for a(t), which, from
its definition in (3.10), changes sign when the roles of φ0 and φ1 are reversed: this invariance
is not generally true, as will be seen in the following section for π

2 -walls. The dimensionless
quantity δ is a measure of the magnitude of the current in relation to the elastic constants
and it may be negative or positive, depending upon the magnitude of I and the sign of the
(dimensionless) magnetic anisotropy �χ . Both δ and N also depend upon the anisotropy of
the elastic constants. Equation (3.21) is a Bernoulli-type equation and therefore we can make
the substitution

a(t) = 1/
√

v(t), (3.24)

to obtain a linear differential equation in v. The resulting equation is

dv

dt
+

βδ

(1 − βt)
v = 2N. (3.25)

An integrating factor for this equation is (1−βt)−δ and, after some straightforward integration,
this leads to the solution, for v(0) = v0,

v(t) =

⎧⎪⎪⎨⎪⎪⎩
2N

β(1 − δ)
[(1 − βt)δ − (1 − βt)] + v0(1 − βt)δ, for δ �= 1,

−2
N

β
(1 − βt) ln(1 − βt) + v0(1 − βt), for δ = 1,

(3.26)

valid for 0 � t < 1/β. For v(t) to remain positive for arbitrary positive v0 and for all δ we
require that N > 0. This leads to a restriction in the relative values of the elastic constants,
namely,

K2 < K3

(
1 +

32

9π2

)
. (3.27)

We remark here that the elastic constants K2 and K3 are not those for nematics. Nevertheless,
they are expected to be of a similar magnitude to the well-known nematic elastic constants
and whether or not the inequality (3.27) is generally satisfied remains to be determined for
SmC materials: it has been established experimentally [23] that K2 < K3 for most nematic
liquid crystals. If N < 0 then the differential equation (3.21) will have real solutions, but their
existence will depend, unlike the solution in (3.26), on the relative magnitudes of β, δ and the
arbitrary positive initial data v0 = a2

0 .
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Under the assumption that N > 0, the solution a(t) is easily obtained from (3.24) and
(3.26) while the more physically relevant solution for the wall half-width ξ0(t) is given via
a(t) through relation (3.10), which shows that

ξ0(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
9π2N

8β(1 − δ)
[(1 − βt)δ − (1 − βt)] + ξ 2

0 (0)(1 − βt)δ
} 1

2

, for δ �= 1,{
−9π2N

8β
(1 − βt) ln(1 − βt) + ξ 2

0 (0)(1 − βt)

} 1
2

, for δ = 1.

(3.28)

Note that ξ0(t) is continuous with respect to δ at δ = 1, as can be seen by taking the appropriate
limit δ → 1 in (3.28). The solutions ρ(t) and ξ0(t) are the key solutions to our problem since
ρ tracks the position of the core of the domain wall while ξ0 gives the half-width of the domain
wall, which is represented by half of the radial depth of the annular region pictured in figure 3.
The solution for φ(ξ, t) is given via (3.17), (3.24), (3.26) and (3.28) by

φ(ξ, t) =

⎧⎪⎪⎨⎪⎪⎩
0, for r0 � ξ � −ξ0(t),

π

2
+ a(t)ξ − 16

27π2
a3(t)ξ 3, for −ξ0(t) < ξ < ξ0(t),

π, for ξ � ξ0(t).

(3.29)

The solution to the problem for a π -wall is therefore completely encapsulated by the explicitly
available solutions for ρ(t), ξ0(t) and φ(ξ, t) given by (3.19), (3.28) and (3.29), respectively.

It is seen from (3.28) that as t → tm ≡ 1/β,

ξ0(t) →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for δ > 0,√

9π2

8β
N + ξ 2

0 (0), for δ = 0,

∞, for δ < 0,

(3.30)

noting, as above, that N > 0 is required for the solution ξ0 to be valid for arbitrary initial
data. From the experimental set-up described above, t will never actually approach tm because
ρ(t) − ξ0(t) will equal the inner solid circular radius r0 at some time τ at which both the core
radius ρ and the growth or expansion of the annular region halt (recall that ξ0(t) = ξ1(t) by
(3.9)). Therefore the value of τ must lie within the time interval [0, tm) and

ρ(τ) − ξ0(τ ) = r0. (3.31)

This means that the extreme situation in equation (3.30) will not occur and therefore φ(ξ, t)

will always be valid as a solution for 0 � t � τ , with −ξ0(t) � ξ � ξ0(t).
We shall look at some particular solutions for positive and negative values of δ for a set

of typical material parameters and select, when required, suitable data from the following list,
which is based upon typical nematic parameters [3]:

K2 = 3.8 × 10−12 N, K3 = 7.5 × 10−12 N, μ0 = 4π × 10−7 H m−1,

�χ = 1.2 × 10−6, θ = π

6
, λ5 = 3 × 10−2 Pa s. (3.32)

The effect of anisotropy in the elastic constants K2 and K3 is evident in the explicit solution
for ξ0(t) via the constants N and δ, bearing in mind our requirement that N be positive, and we
therefore concentrate on the behaviour of solutions as δ varies or changes sign. For an inner
cylindrical core and initial conditions, examples will use

r0 = 2.5 × 10−4 m, ρ(0) = 3.5 × 10−4 m, ξ0(0) = 10−6 m. (3.33)
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Figure 4. (a) The solutions (3.19) and (3.28) for the location ρ(t) of the core of the wall and
the wall half-width ξ0(t), respectively, for a π -wall. The material parameters used in calculations
are as stated in (3.32) and (3.33); the dimensionless parameter δ, defined in (3.22), depends upon
the magnitude of the current I and has been set to 10 as an illustration. The dynamics of the wall
will cease at time t = τ despite the solutions being available up to the maximum time tm, for
reasons that are explained in the text. (b) The evolution of the orientation angle φ(ξ, t) of c for the
solutions calculated in (a) over the interval 0 � t � τ , obtained from the results in (3.24), (3.26),
(3.28) and (3.29). The bold curves correspond to the time dependence of the inner and outer edges
of the domain wall for 0 � t � τ : the upper bold curve coincides with the curve for ξ0(t) in
(a) when placed in the plane φ ≡ π , while the lower curve is obtained by symmetry, as detailed in
the text.

The solutions for ρ(t), ξ0(t) and φ(ξ, t) are shown in figure 4 for the material parameters
(3.32) and conditions (3.33) when δ = 10. The full solutions for 0 � t � tm, where tm has been
calculated as 490 s, are shown in figure 4(a) where it is seen that ρ decreases monotonically
to zero while the expansion of the wall half-width ξ0 reaches a maximum before decreasing to
zero, in accordance with the general result (3.30) for positive values of δ. The calculated time
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Figure 5. The π -wall solution for φ(ξ, t) over the time interval 0 � t � tm: other details are
identical to those for figure 4. Figure 4(b) is a restriction of this solution to 0 � t � τ , as discussed
in the text.

at which the growth of ξ0 and the reduction in ρ cease, i.e. when relation (3.31) is satisfied, is
τ = 8.65 s, which is below tm. For any experimental set-up with a non-zero central cylinder
of radius r0 > 0 both the reduction of ρ towards the origin and the expansion or contraction
of ξ0 will halt at some value τ with 0 � τ � tm, as indicated earlier. An increase in r0 will
shift τ closer to zero while a decrease in r0 will shift τ towards tm. This can be seen from the
vertical distance between ρ(t) and ξ0(t) in figure 4(a): the length of the dotted vertical line at
t = τ between ρ(t) and ξ0(t) is equal to r0. Figure 4(b) shows the solution (3.29) for φ(ξ, t)

for 0 � t � τ , obtained via the results in equations (3.24), (3.26), (3.28) and (3.29). The bold
curves represent the time evolution of the wall boundaries at ±ξ0(t). The plane ξ = 0 is, of
course, located at ρ(t) and the displayed behaviour of φ is therefore relative to the moving
coordinates frame. The upper bold curve lying in the ξ t-plane coincides with the curve for
ξ0(t) in figure 4(a) on the interval 0 � t � τ when it is placed in the plane φ ≡ π while the
lower bold curve is obtained by symmetry around the ξ = 0 plane since the outer wall-width
ξ0(t) is equal to the inner wall-width ξ1(t), by (3.9). Figure 5 shows the general evolution
of φ(ξ, t) for 0 � t � tm and is displayed for information so that the profile for φ can be
anticipated for different values of τ (which have to be calculated for different values of r0).
The relevant solution for φ is that portion of the surface generated over the interval 0 � t � τ :
see figure 4(b), which is the relevant part of the surface in figure 5.

Graphs for other positive values of δ produce qualitatively similar results. Nevertheless,
for high values of δ (which correspond to fields of large magnitude) a metastable state in ξ0(t)

appears, analogous to some of the special cases for nematics discussed by Stelzer and Arodź
[4]. For δ = 600, tm = 490 s, τ = 188.8 s and the value of ξ(t) is almost constant for a
period of time after an initial increase, as can be seen in figure 6(a) and its inset for small
times relative to tm. Eventually, the full solution for the wall half-width ξ0 decreases to zero.
As before, the dynamics will cease at t = τ when relation (3.31) is fulfilled, as marked in
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Figure 6. (a) An example for a π -wall with high magnitude field. The material parameters are
as stated in (3.32) and (3.33), as for figures 4 and 5, except that here δ = 600. For small times
relative to tm a metastable state appears for ξ0 as shown in the inset, analogous to the situation
for a related nematic problem discussed in [4]. The dynamics will cease at t = τ when relation
(3.31) is satisfied. (b) The π -wall for δ = 0, the remaining parameters as for (a). The solutions
ρ(t) and ξ0(t) coincide at a time tc where τ < tc < tm. The dynamics will always cease at t = τ

before these solutions can coincide, due to the presence of the solid wire in the region 0 � r � r0.
(c) and (d) The π -wall for �χ = −1.2 × 10−6 and δ = −10 (c) and δ = −600 (d). The results in
(c) and (d) are qualitatively similar to those in (b) except that τ has decreased with decreasing δ.

figure 6(a). It is noted that the time τ has increased from that obtained for δ = 10 while tm
must remain the same.

Although most materials have �χ > 0, for completeness we consider briefly the case
for �χ < 0. It is perhaps first worth noting that, for the material values stated in (3.32),
δ = −1.49 when I = 0; for δ < −1.49 we require �χ < 0. As examples for negative
magnetic anisotropy we have examined solutions for δ = −10 and δ = −600 and replaced
the magnetic anisotropy by �χ = −1.2 × 10−6, the other material parameters and conditions
in (3.32) and (3.33) remaining unchanged. The results are shown in figures 6(c) and (d) where
the values for τ have been calculated numerically. As predicted by the result in (3.30) for
δ < 0, ξ0(t) increases to infinity as t → tm while ρ(t) remains as above, given by (3.19), and
decreases to zero at t = tm. The behaviour is essentially qualitatively similar to the δ > 0
case, in that a time τ can be calculated, as indicated in the figure, at which the decrease in ρ

and increase in ξ0 stop because their difference equals r0, at which time relation (3.31) holds,
as before. The corresponding solutions for φ(ξ, t) for 0 � t � τ will be similar in appearance
to those shown in figures 4 and 5. One apparent difference is that no metastable behaviour
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Figure 7. A π
2 -wall when φ0 = 0, φ1 = π

2 and φ = π
4 at the core of the domain wall. The

alignment of the vector c is indicated schematically by the short bold lines placed along the radial
direction. Other general details are as mentioned in figure 2.

in ξ0(t) seems to occur for large negative values of δ, in contrast to that for large positive
values of δ. Another key difference for δ < 0 is that there will always a critical time tc, with
τ < tc < tm, at which ρ(tc) = ξ0(tc), as can be seen from figures 6(c) and (d): the dynamic
process will cease before t = tc because r0 > 0, due to the presence of the solid wire in the
region 0 � r � r0. Further, the solutions cannot make physical sense for t > tc because
ρ(t) cannot actually be less than the half wall-width ξ0(t). Qualitatively similar results have
been obtained for other negative values of δ. Note also that τ decreased from τ = 7.40 s to
τ = 1.79 s as δ decreased from δ = −10 to δ = −600.

Given the behaviour stated at (3.30) for ξ0(t) as t → tm, one particularly special case of
interest is the solution for δ = 0. The results are presented in figure 6(b) using the parameters
from (3.32) and (3.33). As above, ρ(t) will be unchanged for these values: however, in this
case, setting δ = 0 is equivalent to selecting a current I such that δ is zero. In this example,
I ≈ 34.25 A. The solutions are similar to those in figures 6(c) and (d) in that times τ and
tc, τ < tc < tm, with the same features as before, can be calculated. The earlier comments
concerning such times τ and tc are equally valid here also.

3.3. π/2-walls

As mentioned previously, numerical solutions to equations (3.13), (3.14) and (3.15) need to
be generated for general values of φ0 and φ1 because, unlike the special case of a π -wall,
the nonlinear differential equations do not decouple. Recall that ξ0(t) is obtained from the
solution for a(t) via relation (3.10). Two different π

2 -walls will now be investigated. For
brevity, we shall only consider the case for �χ > 0. Other walls for �χ < 0 and different
values of φ0 and φ1 may be generated by similar procedures.

The first π
2 -wall to be considered is when φ0 = 0 and φ1 = π

2 , as pictured in figure 7
where a typical view of the alignment of the vector c is shown by the short bold lines located
along the radial direction. Other details of the wall are the same as those in figure 2. The
solutions for ρ(t) and ξ0(t) are displayed in figure 8(a) for the same material parameters
stated at equations (3.32) and (3.33) used for the π -wall (with �χ > 0). The parameter δ is
no longer available explicitly and so, as an illustrative example, the current has been set as
I = 1 A. As before, there is a time τ at which relation (3.31) will hold and the dynamics of
the wall will stop. The inset graph in figure 8(a) shows the time evolution of ρ(t) and ξ0(t)
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Figure 8. (a) Solutions for ρ(t) and ξ0(t) calculated numerically from equations (3.13), (3.14)
and (3.15), via (3.10), for the π

2 -wall where φ0 = 0 and φ1 = π
2 . The material parameters are

as stated in (3.32) and (3.33) and the current has been set to I = 1 A. The dynamics will stop at
t = τ , indicted by a vertical dotted line, as discussed in the text. The inset shows the solutions for
0 � t � τ . (b) The π

2 -wall solution for the orientation angle φ(ξ, t) of c obtained from equation
(3.17) and the numerical solutions for ρ(t), ξ0(t) and a(t). The bold curves correspond to the time
dependence of the inner and outer edges of the domain wall and are derived from the solutions for
ξ0(t), as detailed in the text.

up to the time τ . One striking difference with the analogous results for a π -wall in figure 6(a)
is that the solutions for ρ(t) and ξ0(t) intersect at some time tc, with τ < tc < tm, where tm
is the calculated maximum time for the availability of these time-dependent solutions; such
behaviour only occurs for a π -wall when �χ < 0. For the same reasons mentioned at the
end of section 3.2, the dynamics must cease before time tc is reached, due to the presence of
the solid wire in the region 0 � r � r0. Figure 8(b) shows the solution for the orientation
angle φ(ξ, t) of c obtained from equation (3.17) and the numerical solutions for ρ(t), ξ0(t)

and a(t) (derived from relation (3.10)). This graph is similar in form to that for the π -wall in
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Figure 9. Solutions for ρ(t) and ξ0(t) for the same parameters used in figure 8 for the π
2 -wall

with φ0 = 0 and φ1 = π
2 , except that here the current has been set as I = 100 A to demonstrate

typical behaviour for a high magnitude induced field. The solutions for ρ(t) and ξ0(t) coincide a
t = tc where τ < tc < tm. The maximum time tm for the existence of time-dependent solutions
has been calculated numerically. The dynamics will always cease at t = τ before these solutions
can coincide, due to the presence of the solid wire in the region 0 � r � r0.

figure 4(b) where, as before, the plane ξ = 0 is located at ρ(t) so that the displayed behaviour
of φ is therefore relative to the moving coordinates frame. The bold curves are analogous to
those in figures 4(b) and 5 and correspond to the time dependence of the inner and outer edges
of the domain wall for 0 � t � τ . For example, the lower curve coincides with that for ξ0(t)

in figure 8(a) when placed in the plane φ ≡ 0 while the upper curve is obtained by symmetry
and the result expressed in (3.9) that requires ξ0(t) = ξ1(t).

To demonstrate that other types of behaviour appear at higher magnitude fields, solutions
have been generated for an extreme case where I = 100 A, the other material parameters
remaining as above. The results for ρ(t) and ξ0(t) are shown in figure 9. The graphs are
qualitatively similar to those in figure 8(a) for 0 � t � τ , but have different qualities for
t > τ . For example, the domain wall half-width ξ0(t) diverges and ρ(t) collapses to zero as
t approaches tm, where the maximum time tm for the existence of time-dependent solutions
has been calculated numerically. This behaviour of the solutions for �χ > 0 is similar to that
presented above for the π -wall in figures 6(c) and (d) when �χ < 0: it is seen that there is
a time tc, with τ < tc < tm, where ρ(tc) = ξ0(tc). Again, as in the case of the π -wall, the
solutions will never actually coincide at tc because the dynamics will stop at t = τ , due to
the physical presence of the conducting wire of radius r0 > 0. The corresponding graph for
φ(ξ, t) has not been plotted here for I = 100 A, but it can be seen that it will be similar in
form to that for I = 1 A presented in figure 8(b), the main difference being that τ will have
been reduced from τ = 30.55 s to τ = 23.34 s.

The second π
2 -wall to be considered occurs when φ0 = π

2 and φ1 = 0, as pictured
in figure 10. The material parameters are as for the previous π

2 -wall and the numerical
solutions for ρ(t) and ξ0(t) are shown in figure 11(a) for I = 1 A. The maximum time for the
existence of time-dependent solutions has been calculated numerically as tm = 303.56s. As in
figure 9, there is a time tc at which these solutions coincide, with τ < tc < tm, where τ , as
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Figure 10. A π
2 -wall when φ0 = π

2 , φ1 = 0 and φ = π
4 at the core of the domain wall. The

alignment of the vector c is indicated schematically by the short bold lines placed along the radial
direction. Other general details are as mentioned in figure 2.

before, is the time at which relation (3.31) holds. The physically relevant solutions are valid
up until t = τ , for the same reasons explained earlier for previous solutions. Note that, in
contrast to the previous π

2 -wall at I = 1 A in figure 8(a), ξ0(t) diverges and ρ(t) collapses
to zero as t approaches tm. The corresponding solution for φ(ξ, t) is plotted in figure 11(b)
and has been obtained by the same procedure used to obtain that for figure 8(b); the bold
curves are related to the inner and outer edges of the domain wall and are to be interpreted as
in previous plots for φ. One essential difference in this instance is that for this geometrical
set-up τ = 17.47 s whereas in the previous π

2 -wall τ = 30.55 s, despite all the parameters
being equal apart from the interchange in the values of φ0 and φ1.

For further comparison with the results for the previous π
2 -wall we also consider the case

of the second π
2 -wall for a high induced field and set I = 100 A, all other parameters remaining

unchanged. The results are displayed in figure 12 to allow a comparison with figure 9. Similar
to figure 9, there is a time τ when the domain wall dynamics cease, as indicated in the inset
in figure 12. However there is one remarkable feature to the results in figure 12 that is not
available in any of the previous results for domain walls. Recall that when the vertical distance
between ρ(t) and ξ0(t) reduces to r0 then the wall no longer propagates, as is the case at the
time τ in this example. Nevertheless, if r0 is very small then the distance between ρ(t) and
ξ0(t) can never reduce to r0 for the given initial conditions: it is easily seen from the full results
in figure 12 that the location of the domain wall core at ρ(t) will then always move radially
outwards at a rate greater than that of the expansion in the domain wall half-width. Numerical
results in this case indicate existence of solutions for all times t � 0. Consequently, the
dynamics will never cease and the domain wall will always expand in width while propagating
radially outwards, with the outer and inner edges of the wall always travelling away from the
centre of the sample. This property of the domain wall is of course dependent upon the initial
conditions and r0 that have been set in equation (3.33). Qualitatively similar results for other
initial conditions can be calculated numerically if desired.

4. Discussion

Theoretical results have been presented for the propagation of an annular domain wall within
planar aligned samples of SmC liquid crystal. The mathematical model introduced and
developed in section 2 for a comoving set of axes is quite general for a radial geometry and
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Figure 11. (a) Solutions for ρ(t) and ξ0(t) for the π
2 -wall when φ0 = π

2 and φ1 = 0. The
remaining material parameters are the same as those used for the π

2 -wall in figure 8 and the current
has been set to I = 1 A. Although the solutions exist up until time t = tm and intersect at tc, with
τ < tc < tm, the physically relevant solutions are only valid for 0 � t � τ , as discussed in the
text. (b) The corresponding solution for φ(ξ, t) over the interval 0 � t � τ . The bold curves
correspond to the time dependence of the inner and outer edges of the domain wall for 0 � t � τ ,
analogous to those in figure 8.

for arbitrary initial conditions which are to supplement the key governing dynamic equation
(2.40) which links the location ρ(t) of the moving ‘core’ of the domain wall and the orientation
angle φ(ξ, t) of the vector c. In the model presented here, c is directly related to the alignment
of the usual liquid crystal director n through relation (1.1) because a and θ are fixed (see
figure 1). The domain wall occurs because of competing boundary conditions on the director
at r = r0 and at radially large distances far from the centre of the sample and its propagation is
initiated by the presence of a conducting wire (in the region 0 � r � r0) that induces a circular
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Figure 12. Solutions for ρ(t) and ξ0(t) for the same parameters used in figure 9 except that the
π
2 -wall here has φ0 = π

2 and φ1 = 0; the current has been set at I = 100 A to demonstrate typical
behaviour for a high magnitude induced field. There is a time τ at which the domain wall no longer
propagates because ρ(τ) − ξ0(τ ) = r0. Nevertheless, if r0 is sufficiently small then it is seen that
the wall will always expand in width while propagating radially outwards: see the text for details.

magnetic field which influences the orientation of the director. A time-dependent reorientation
of the director arises from this competition which leads to the dynamic equation (2.40). This
equation is highly nonlinear and so a polynomial expansion to third order in ξ has been used
to obtain more tractable nonlinear approximations (at least third order is required if we are to
retain the essential features of the nonlinearities because of the second derivatives that appear).
The polynomial expansion and boundary requirements that have been derived for the wall in
section 3.1 lead to the coupled system of nonlinear ordinary differential equations (3.13) and
(3.14) for ρ(t) and the domain wall half-width ξ0(t) (related to a(t) in these equations through
equation (3.10)), with φ(ξ, t) being given by (3.17).

Section 3.2 considered the particularly fortuitous special case of a π -wall, with φ0 = π

and φ1 = 0, where exact solutions to the nonlinear approximating equations were found for
ρ(t), ξ0(t) and φ(ξ, t), given by (3.19), (3.28) and (3.29), respectively. It was noted that
interchanging the roles of φ0 and φ1 did not alter the differential equations in this special
case. The solutions are characterized by the constants β, N and the dimensionless parameter δ,
defined in section 3.2. The positivity of N was a necessary condition to ensure real-valued
solutions and this led to the restriction (3.27) on the relative magnitudes of the elastic constants.
The parameter δ is essentially a control parameter that is a measure of the influence of the
magnitude of the applied current, the magnetic anisotropy and the elastic constants. The exact
solutions have been generated for the material parameters (3.32) and initial conditions (3.33)
and have been plotted in figures 4, 5 and 6(a) for examples of positive magnetic anisotropy,
figure 6(b) in the special case of δ = 0, and in figures 6(c) and (d) for negative magnetic
anisotropy. In all cases a time τ , which depends upon the initial conditions and the selection
of r0, was identified numerically via condition (3.31); at t = τ the propagation of the wall stops
and it no longer propagates for t � τ : the details are contained in section 3.2. One notable
feature in figure 6(a), plotted in the inset, is the appearance of a metastable-like phenomenon
where, after an initial period of time, the solution for the wall half-width was nearly constant
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before it eventually reduced to zero, an effect that had been observed in previous work on
nematic liquid crystals by Stelzer and Arodź [4].

For any other choices of boundary conditions φ0 and φ1 the coupled dynamic equations
for ρ(t) and ξ0(t) must be solved numerically. Equations (3.13) and (3.14) contain expressions
that are odd in the powers of a(t) and, since a(t) defined in (3.10) also depends on φ0 − φ1,
they are therefore not invariant to an interchange in the roles of φ0 and φ1. This asymmetry
in the dynamic equations means that, in general, the results must change when the values of
φ0 and φ1 are interchanged. Further, since explicit exact solutions are generally unavailable,
a restriction on the relative magnitudes of the elastic constants, analogous to that in (3.27),
is no longer explicitly available and the occurrence of any such restriction would have to
be investigated numerically. As typical examples we considered two particular π

2 -walls in
section 3.3. The results are presented in figures 8 and 9 for φ0 = 0 and φ1 = π

2 , and in
figures 11 and 12 for φ0 = π

2 and φ1 = 0, using the same set of material parameters as those
used for the π -wall for �χ > 0. With the exception of the high magnitude current case in
figure 12, all the results are qualitatively similar to the previous cases in that a time τ can
be identified at which time the wall no longer propagates. The exceptional case in figure 12
for a large current shows the remarkable property, when r0 is sufficiently small, of a domain
wall that is always increasing in width and continues to propagate radially outwards for all
t > 0. In this case, the whole domain wall itself always travels further away from the centre
of the sample because its central core travels further in the radially outwards direction than its
expansion in wall half-width, so that the dynamics will continue and there will be no time τ

at which it will halt. We have been dealing with radially infinite samples in this paper and,
of course, from physical considerations such a wall will actually cease propagating when the
distance ρ(t) + ξ0(t) equals that measured radially from r = 0 to a boundary surface, that
is, it may continue to expand until its ‘outer’ domain wall edge located at ρ(t) + ξ0 reaches
the outer extremities of the sample. The numerical results for the π

2 -walls share many of the
features that have been discovered for the exact solutions related to the π -wall, one important
difference being the aforementioned possibility of a propagating wall possessing the growth
qualities that appear in figure 12.

A fascinating aspect of the work presented here is the insight to the possibility of a π -wall
‘collapse’ at the origin at a critical time when ρ(t) = ξ0(t) = 0, which could only happen if
no wire were present at the origin: see figures 4(a) and 6(a). For the π -wall introduced above
this would mean that the wall would vanish at t = tm = 1/β, which can be calculated using
(3.20). If it were possible to induce an annular domain wall that propagates in the absence
of any solid wire placed along the z-axis then a domain wall collapse could be envisaged for
δ > 0, in analogy with the catastrophic behaviour of the wall half-width for Bloch walls in
nematic liquid crystals discussed by Stelzer and Arodź [4]. For a π -wall with δ < 0, again in
the absence of any wire, there will be a time tc when ρ(t) = ξ0(t) �= 0, which differs from
the case for δ > 0: see figure 6. In this situation the solution for ξ0(t) (which equals that
for the ‘inner’ wall half-width ξ1(t)) does not make physical sense for t > tc and it is not
clear if the core of the wall could continue to expand outwards or not. However, these are
merely speculative observations that have arisen from an inspection of the results in the figures.
Similar comments apply to the results for the π

2 -walls displayed in figures 8, 9 and 11. In
figure 12 the domain wall expansion does not diverge at a finite time, as far as numerical
experiments have indicated. This expansion is perhaps in contrast with the catastrophic
behaviour in the expansion of the wall half-width encountered for times close to a finite
critical time for a Néel wall in nematics discussed by Stelzer and Arodź [4], the difference
here being that the solutions appear to exist for all positive time, as far as numerical experiments
have indicated.
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Work that is connected to the domain walls discussed here is that concerned with the
appearance of multiple ring pattern formations that can occur in samples of ferroelectric
smectic C liquid crystals (SmC∗) under the influence of rotating electric fields. Each circular
ring that appears in such patterns may be modelled by a single radially dependent domain
wall that can travel in the radial direction as time advances. Some experimental results of
interest, and details of experimental set-ups, may be found in the articles by Hauck et al [24],
Dascālu et al [25] and Link et al [26]. Some preliminary theoretical results have been
obtained by Kilian et al [27], who have reported some analysis that involves critical electric
field strengths and the velocity of the rings. Wigham and Stewart [28] have also examined the
theoretical stability of some basic ring patterns in SmC∗ liquid crystals. A common feature
shared by the results for ring patterns in SmC∗ with those contained in this paper for SmC is
the possible propagation of a domain wall in the radial direction that is induced by the presence
of an applied field. It is conceivable that multiple domain walls in SmC could occur for the
experiment proposed in this paper and, in this context, the results we have presented could
be considered as the dynamics of one ‘ring’, especially when metastable states occur such as
those discussed for figure 6(a).

The results in this paper have been derived under the assumption that there is no flow.
The incorporation of a non-zero fluid velocity will lead to a larger system of complex
nonlinear dynamic equations. The possibility of finding exact solutions, even for nonlinear
approximations to such equations, is limited and a more advanced numerical procedure would
have to be invoked. Nevertheless, the effect of flow upon known exact solutions, such as
those presented above in section 3.2 for a π -wall, may be investigated by considering the
flow as a perturbation to the known time-dependent domain wall. This is a common practice
in the analysis of the dynamics of the classical Freedericksz transition in liquid crystals
[2, 3], when a set of linearized perturbation equations that incorporate flow may be solved
analytically (or numerically) in order to gain insight into the flow properties of the original
highly nonlinear problem. Although these procedures are generally used for examining the
flow of perturbations to constant or time-independent states, the techniques may be extended
to the dynamics presented here for the π -wall, especially since the exact solutions for ρ(t)

and ξ0(t) are known explicitly. This work is currently in progress.
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